
MULTIPLE-VALUED PLA MINIMIZATION BY CONCURRENT
MULTIPLE AND MIXED SIMULATED ANNEALING*

Cem Yildirim and Jon T. Butler
Dept. of Electr. and Comp. Eng.

Naval Postgraduate School
Monterey, CA 93943-5004 U.S.A.

Abstract

We analyze simulated annealing applied to
multiple-valued programmable logic array (MVL PLA)
design. Of spec@c interest is the use of parallel
processors. We consider the use of loosely-coupled, coarse-
grainedparallel systems, and study the relationship between
the quality of the solution and computation time, on the one
hand, and simulated annealing parameters, start
temperature, cooling rate, etc., on the other. We also
investigate simulated annealing where there is a mixture
of move types. The mixed move approach provides
improvement in both the number of product terms and
computation time.

1: Introduction

Simulated annealing is a technique for obtaining
approximate solutions to combinatorial optimization
problems. Advantages include ease of implementation and
the potential to find minimal solutions [12]. Essentially, it
is a search of the solution space with the goal of finding a
solution of minimum cost. Three steps are repeatedly
applied [121.

1) Create a new solution from the current solution.
2) Calculate the cost of the new solution.
3) If the change in cost of the new solution is below
some threshold, make it the current solution.

Simulated annealing is well-suited to the MVL PLA
minimization problem. Given an expression in the form of
a set of product terms, our algorithm [2] divides and
recombines the product terms, gradually progressing toward
a solution with fewer product terms. Unlike other
minimization techniques (classified as direct-cover
methods), this technique manipulates product terms directly,
breaking them up and joining them in different ways while
reducing the total number of product terms. Manipulation
of product terms is done nondeterministically. That is,

Chyan Yang
Inst. of Mangmnt Sci. & Inst. of Info. Mangmnt

National Chiao Tung University
Hsinchu, TAIWAN, R.O.C.

randomly chosen product terms are randomly combined
(cost decreasing move), reshaped or divided (cost increasing
move). Although cost increasing moves take the solution
away from the optimal solution, they allow escape from
local minima. Since the solution space in MVL PLA
minimization is very large, there are usually a large number
of moves before a minimal or near-minimal solution is
achieved. To direct the search toward improved solutions,
a bias is applied to the probability of acceptance of a cost
increasing move. That is, initially the probability of
accepting such a move is high, between 0.5 and 1.0.
However, as the time passes, this probability decreases. The
result is that, at first, wide excursions are made in the
solution space, while near the end, only minima are
explored. When the probability of accepting a cost
increasing move is low, simulated annealing is usually in a
minima, and the probability of escape is also low.

2: Background

A product term is expressed as c %: %> ".X.6,.
where c E {1,2, ..., r - l } is a nonzero constant, where the
literal function is given as

and where concatenation is the min function; i.e.
xy=min(x,y). Since the literal function takes on only values
0 or r-I , the product of literals is also 0 or r-I, while the
complete term takes on values 0 or c. An r-valued function
f(xI,x2 ,..., x,) takes on values from {O,I ,..., r-I} for each
assignment of values to the variables, which are also
r-valued; i.e. xi E {0,1,2 ,..., r-I]. A function can be
represented by a sum of these product terms as shown on
the next page,

Research supported by the Naval Research Laboratory, Washington. DC through direct funds at the Naval Postgraduate
School, Monterey CA.

17
U.S. Government Work Not Protected by U.S. Copyright

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1993 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
Multiple-Valued PLA Minimization by Concurrent Multiple and Mixed
Simulated Annealing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We analyze simulated annealing applied to multiple-valued programmable logic array (MVL PLA) design.
Of spec@c interest is the use of parallel processors. We consider the use of loosely-coupled,
coarsegrainedparallel systems, and study the relationship between the quality of the solution and
computation time, on the one hand, and simulated annealing parameters, start temperature, cooling rate,
etc., on the other. We also investigate simulated annealing where there is a mixture of move types. The
mixed move approach provides improvement in both the number of product terms and computation time.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

fiX,&??...&#J = c1 % J X ? l a12xjblP*.* Q1*xnbl,m

+c2 S I X ? ".x242... %x?
+c3 %lx?.1 4JxjbV... %bX#b*.

+ ?

where + is truncated sum, i.e. a+b = max{a+b , r - l / , with
the right sum as ordinary addition, where a and b are
viewed as integers.

A minimal sum-of-products expression forf(x,,x,, ..., xn,)
is one with the fewest product terms. Our approach to
finding such a solution is based on Dueck et al [2].
Specifically, given a set of product terms that sum to a
given function, we derive another set by making a move.
Similarly, a move is made from the next set, etc. until
finally a minimal or near-minimal set is formed. As in [2],
we investigate two kinds of moves.

1) Cut-or-Combine: Two chosen product terms are
combined into one, if possible. If not, one is chosen
randomly, with probability 0.5. If the chosen product term
is a 1 minterm (I.e. a product term of the form

1 "x: %&' ... where a,=bi for all z), the current move
is abandoned and another pair of product terms is chosen.
Otherwise, the chosen product term is divided into two.
Division occurs either along the logic values or
geometrically [2].

2) Reshape: This move, like Cut-or-Combine, operates
on two product terms, and combines the pair if a combine
is possible. If not, a consensus term is formed. The fewest
product terms are chosen to cover all remaining minterms
P I .

In this paper, instead of committing to either Cut-or-
Combine or Reshape, we use a mixture of both with
different paths, and this is performed concurrently in a
distributed system. The results of three different approaches
are investigated: 1) different paths in the solution space, 2)
mixing types of moves, and 3) concurrency.

3: Parallel methods for simulated annealing

3.1: Different paths

One way to improve the final result is to choose
different paths. This approach was tested using the Reshape
algorithm on the ten different functions. C 1,C2,..,C10, used
in Dueck et a1 [2]. Each has 200 minterms. For every
function, eight different paths were chosen. Table 1 shows
the results. Each entry shows two results, the number of
product terms achieved and the computation time (in
parentheses). The computation time is CPU seconds on a
Sun Workstation running the SunOS Release 4.1.1-GFX-

Rev2 operating system. The column "OUT" shows the
smallest number of product terms and is considered to be
the output of the algorithm. In this column, parentheses
enclose the total computation time over the eight paths.
Since this was performed on one processor, this total is the
computation time for this (sequential) version of the
algorithm. The average of the product terms and
computation times for each path are given in the last row.
Table 1 shows a clear dependence on the path. For
example, the eight paths on function C4 yield five different
values for a near-minimal solution, 80, 81, 82, 83 and 86
product terms.

This experiment shows that a slight improvement in
the average is achieved by performing eight rather than one
simulated annealing experiment. Taking the best from eight
yields an average of 82.4 product terms over the ten
functions. We can represent the performance of one
simulated annealing experiment by averaging the averages
for each path in Table 1, yielding 84.2. This improvement
requires a large computation time, an average total of 470.5
seconds vs. 58.0 seconds for one path (calculated by
averaging the times for each path). Such a large
computation time can be reduced significantly by using
multiple processors. Because there is no need to exchange
information, the various paths can be executed concurrently.
The concurrent execution is discussed in Section 3.3 .

3.2: Annealing with mixed moves

It was shown in Dueck et a1 [2] that Reshape
produces overall better results than Cut-or-Combine.
However, this was not true of every function tried; Cut-or-
Combine did better in a few cases. With this experience,
we investigated the use of simulated annealing in which
Cut-or-Combine moves were mixed with Reshape moves
(Fig. 1). Different mixture ratios were tried, all of which
used Reshape more than Cut-or-Combine. The best results
were achieved when Cut-or-Combine moves occurred 4%
of the time and Reshape moves occurred 96% of the time.
Our results are shown in Table 2 (with 4% / 96% mixture
ratio). This experiment yields an average number of product
terms of 81.7 compared with 84.2 for a single experiment
using Reshape without Cut-or-Combine.

3.3: Concurrency in simulated annealing with
multiple and mixed moves

We have shown that the use of more than one path
with and without mixed moves gives a reduction in the
number of product terms over the use of one path.
However, substantial computation time is required when
one processor is used. A speedup can be achieved by using

18

Initial Temp

Mnr Valid Faeh

Max F m n

Coding Rae

Mnr Try Feetor

n

: 0.7

: 4

: S

:093

:2s

Table 1. Sequential multiple paths with regular Reshape.

more than one processor in a distributed system. To
investigate this, we used eight Sun Workstations. Fig. 2
shows a program for this distributed system. The host
begins by sending the name of the file (in which the input
function is placed) to the other processors and later assigns
itself as processor 0. Each processor chooses the paths
randomly. The probability of two processors picking
identical next solution states is reduced by assigning
different seeds for the random generators of the processors.
The probability that two or more processors choose the
Same pair of product terms can be calculated as
1- M! , where M = (;), N is the number of

(M-N)! M N
processors used, and P is the number of product terms, in
the function to be minimized. For instance, with 8
processors and a function with 200 product terms this
probability is 0.0014. The probability of going to the same
next solution state is even less. Because of this small
probability, the program does not check if two processors

a
1

I m-N€ I I
I nMT- I

1

I

have started with the same next solution state, nor if, at
any point in the computation, the solution is the same. In
this way, communication is required only at the beginning
and at the end of the process.

Figure 1. Simulated annealing with mixed moves.

Initial Temp : 0.6

Max Valid Faeta : 4

Max Frozen : 5

Cooling Rate : 0.w

Mnr Try Facta :25

Cu1-a-CombinJResh WO : 46/96%

Table 2. Sequential multiple paths with mixed annealing.

19

PI-@
Figure 2. Concurrent implementation of

multiple path with mixed moves.

HEURISTIC

CUT-aCOMBINE

RESHAPE

To test concurrency, the same tests given in Tables 1
and 2 were repeated with concurrent and mixed
simulatedannealing (Test-A and Test-B). Table 1 shows the
computation time is reduced by factors of 7.1 and 6.6
respectively. These speedups are reasonably close to the
theoretical maximum of 8 (there are 8 processors).

In addition, experiments, were performed on two
functions, FUNCTION1 and FLTNCTION2, used to com-
pare Cut-or-Combine with Reshape in [2]. FUNCTION1 is
a 4-valued 4-variable symmetric function of 176 minterms
with a known minimal solution of 6 product terms. It is
interesting because it is difficult to minimize by the Cut-or-
Combine method. FUNCTION2 is a 4-valued 2-variable
function for which Reshape cannot find a minimal solution
if it starts in (one of many) specific initial states.

The results are shown in Table 3. Concurrent Reshape
produces the same number of product terms as Reshape, 7
and 5 for FUNCTION1 and FUNCTION2, respectively.
Concurrent Multiple and Mixed produces the best results in
both cases, 6 and 4 product terms for FUNCTION1 and
FUNCTION2, respectively. It is interesting that the
occasional application of Cut-or-Combine among many
applications of Reshape produces a minimal solution,
impossible with just Reshape alone.

L

NNCTION 2 FUNCTION 1

IN OUT T W S E C) IN OUT Time(SEC)

14 19 673 5 4 17.6

14 7 24.5 5 5 0.25

3.4: Optimum parameters for concurrent and
mixed simulated annealing

CONCURRENTRESHAPE

CONCURR.
MULTIPLP&MIXFD

We consider what effect various parameters have on
the performance of the methods discussed above. These
parameters are tested with the following values.

a. Maximum frozen factor (3 ; 4 ; 5)
b. Maximum try factor (20 ; 25 ; 29)
c. Maximum valid factor (3 ; 4 ; 5)
d. Initial Temperature (0.50 ; 0.55 ; 0.60 ; 0.62 ; 0.65

; 0.70 ; 0.75)

14 7 27.9 5 5 0.43

14 6 54.8 5 4' 1.38

Table 3. Results of two test functions

e. Cooling Rate (0.90 ; 0.91 ; 0.92 ; 0.93 ; 0.94 ; 0.95

f. Mixture Rate (Cut-or-Combinemeshape) (10%/90%

The use of these parameters is shown in [7]. Briefly,
maximum frozen factor represents how many temperature
values are allowed at which no new moves are generated
before termination. Maximum valid factor, when multiplied
by the number of minterms, gives the maximum number of
valid moves allowed at each temperature. Maximum try
factor, when multiplied by the number maximum number of
valid moves, gives the maximum number of attempts at
moves that are allowed at each temperature.

We also investigate the effects of temperature
dependent mixture rates. Fixing the current temperature, we
change the mixture rate as the time changes. This approach
did not give better results than the constant mixture rates.
There are almost 8,000 combinations of these parameters.
However, this is too many to evaluate experimentally. So
our approach is to find a near-optimum combination by the
following process. At the beginning of our search, all
values of "maximum frozen factor" (3; 4; 5) are tested.
During these tests, the remaining parameters (b, c, d, e, f)
are chosen to be the same as with Reshape in Table 1 (0.7;
4; 5; 0.93; 25), except that a mixture rate of 5%/95% is
used. From these tests, the best value (5) is chosen.
Keeping this value, the second parameter (maximum try
factor) is searched and the best result (25) chosen. The rest
of the search is done this way in the order given above for
the parameters. After the first pass down to the last
parameter, another value is chosen for the third
parameter and the search proceeds as before. Notice that
more choices are made for the last parameters. In this way,
we performed 70 passes for each function across six
parameters. Results of these tests are given in Table 4.

; 0.97 ; 0.98)

; 5%/95% ;4%/96% ; 3%/97% ; 2%/98%)

20

Table 4. Test comparison

4: Results

Two criteria are used to judge a minimization
algorithm, the number of product terms and the computation
time. Fig. 3 shows how twelve algorithms compare over a
set of ten 4-valued 4-variable functions each having 20
minterms. For example, Reshape in Fig. 3 labels a
simulated annealing experiment using Reshape which
achieved an average number of product terms of 84.2 with
an average computation of 58.0 seconds (the column RSAV
in Table 1). If Reshape is replaced by Cut-or-Combine in
a single simulated annealing experiment, the result is a
large number of product terms (87.0) and a much longer
computation time (1990.6 sec.). This is shown as a point
labelled Cut-or-Combine in Fig. 3 far away from all other
algorithms.

The point labeled A is the experiment discussed in
Section 3.3 that uses the same parameters used in regular
Reshape except that the "Concurrent multiple path" method
is implemented. The result is an average of 82.4 product
terms with a computation time of 67.5 seconds.

The point labeled D represents an experiment (Table 4)
that has the same parameters as A, except that Cut-or-
Combine and Reshape moves are mixed in the ratio
4%/96%. The average number of product terms is the Same
(82.4) as with A, but the computation time (81.0 seconds)
is worse. This suggests that different parameters may
improve the result. We tested this as follows.

In F (Table 4), the same mixture rate was used as in D
but with new Parameters (0.62 initial temperature; 0.91
cooling rate). In this case, we see that both the number of
product terms and computation time are better than D. This

Figure 3. Test comparison.

shows that the implementation of mixed annealing requires
different parameters than regular Reshape.

In B (which is the concurrent and mixed method -
Table 4), we obtained the best results in terms of product
terms with reasonable computation time. The average output
is 81.7 product terms on the average with a computation
time of 89.9 seconds

The good results shown in B inspired the use of these
same parameters in other cases. We considered the
application of these parameters to regular Reshape. In C,
which is a regular Reshape with multiple paths (Table 4).
we used these same parameters but achieved worse results
than A. This suggests that the good results produced by
concurrent and mixed annealing are not just due to the

21

choice of parameters.
I is the same as F except that the initial temperature

was chosen as 0.7 (as in regular Reshape). The computation
time is nearly the same, but average number of product
terms is worse.

G and H also show how incorrect parameter selection
can affect the algorithms performance. In these cases, G is
the same as B except that the cooling rate is 0.92 instead of
0.94 and H is the same as G except that the initial
temperature is 0.65 instead of 0.60. This indicates that
parameter selection is important as a whole.

In applying J (Table 4), we sought a better average
output than regular Reshape, but a faster computation time.
For this test we used new parameters (0.62 initial
temperature; 0.92 cooling rate; 20 maximum try factor -
maximum number of tries at each temperature without a
move). Indeed, this gave better outputs with a shorter
computation time. We see that J fell in the left lower side
of the Reshape. As expected, the number of product terms
(83.5) was not better than 8 1.7 for B. But there was a large
improvement in computation time to 44.0 seconds compared
to 89.9 seconds for B.

Fig. 4 shows a tradeoff between number of product
terms and computation time. B seems the best in terms of
average computation time and output. That is why we
picked it for "Concurrent Multiple and Mixed Annealing"
and used for the comparisons below. The solid line at 81.1
indicates the best average output found, from all the tests
done (approximately 700) with different parameters. This
shows the benefit to parameter and mixture rate selection.

For some of the test results given in Table 4 (A, B, I,
J), we also investigated the effects of the increasing number
of processors used. Fig. 4 shows the average number of
product terms and the computation t i e s , as a function of
number of processors used for concurrent multiple and

1 2 3 4 6 8 7 8
NUmbaM-ulld

Figure 4. Effects of increasing number of processors.

mixed annealing. J and B seem the best in taking advantage
of having more processors.

Fig. 5 shoes a comparison between regular Reshape
and Concurrent Multiple and Mixed Annealing for all the
functions (Cl,..,ClO). In this figure, the best results known
are also included. For five out of the ten cases, Concurrent
Multiple and Mixed Annealing does nearly as well as the
best known results, while, for the same functions, Reshape
is significantly worse. In all cases, Concurrent Multiple and
Mixed Annealing does better than Reshape.

Figure 5. "Reshape", "Concurrent multiple and
mixed" and "best known" comparison.

Table 5 shows the comparison with various heuristics
described in [l]. The right column gives the rate of
improvement in the average number of product terms over
penalty for computation time. As a reference, the results of
J are included in this table in last row. We see that the
outputs of "Concurrent Multiple and Mixed Annealing" are
better than the others. The increase in computation time is
quite reasonable when we compare the (improvement in
average output) / (penalty for computation time) rates for
all heuristics.

5: Concluding remarks

An interesting result from our studies is the surprising
benefit of mixing two moves, Cut-or-Combine and Reshape.
For example, the mixing of a small number of Cut-or-
Combine moves (4%) with Reshape moves (96%) allows a
minimal solution to be found for a special function, that is
impossible if 100% of the moves were Reshape. The bene-
fit of mixing moves was also shown by our experiments on
sets of functions where there were a low average number of
product terms (e.g. B and D in Fig. 3). As expected, there
is an advantage to performing a simulated annealing

22

IMPRV. IN AVG OUTPUT (96) I TERM I OWI'$JT I ;; I COMP. I PENALTY IN COMP. TIME (96)
AVG. IMPRVM. AVG. PENALTY

HEURISTIC PRODUCT INAVG. COMP. INAVG

TIME (%)
1 I I I I I 1

~~

Table 5. Heuristic comparison.

experiment many times and taking the best result. Doing
this on a set of ten functions using eight different
experiments yields 82.4 product terms versus 84.2 the
expected number for one experiment. This reduction is
achieved at a large increase in time, 470.5 secs. for the
better result versus 58.0 secs. for the worse.

Running multiple experiments concurrently on
independent processors improved the computation time
considerably. With eight processors, there is the prospect of
a speedup of 8 over a single processor sequentially
performing 8 experiments. We found speedups on the order
of 7, indicating a diversity in computation times over the 8
experiments (speedups of 8 are achievable only if all
experiments require identical computation time.) There is
clear advantage in using multiple processors. But, there is
also a point of diminishing returns. Our experience suggests
that at the eight processors used here, we are beyond that
point.

6: Acknowledgements

The authors thank Dr. Parthasarathy Tirumalai for
comments that led to improvements in the paper. Also, the
two referees provided many good comments.

References

[l] P. Tirumalai and J. T. Butler, "Analysis of
minimization algorithms for multiple-valued PLAs," Proc.
of 18th Intl. Symp. on Multiple-valued Logic, 1988, pp.
226-236.

[2] G. W. Dueck, R. C. Earle, P. Tirumalai, J. T. Butler,
"Multiple-valued programmable logic array minimization by
simulated annealing" Proc. of 22nd Intl. Symp. On Multiple-
Valued Logic, May 1992, pp. 66-74.

[3] S. Kirkpatrick, C. D. Gellat, Jr., and M. P. Vecchi,
"Optimization by simulated annealing" Science, vol. 220,
No. 4598, 13 May 1983, pp. 671-680.

[4] G. W. Dueck, R. C. Earle, P. Tirumalai, J. T. Butler,
"Multiple-valued programmable logic array minimization by
simulated annealing" Naval Postgraduate School Technical
Report NPS-EC-92-004, Feb 1992.

[5] C. Yang and Y. M. Wang, "A neighborhood
decoupling algorithm for truncated sum minimization,"
Proceedings of the 20th International Symposium on
Multiple-valued Logic, May 1990, pp. 153-160.

[6] C. Yang and 0. Oral, "Experiences of parallel
processing with direct cover algorithms for multiple-valued
logic minimization," Proceedings of the 22nd International
Symposium on Multiple-valued Logic, May 1992, pp. 75-
82.

[7] C. Yildirim, "Multiple-valuedprogrammable logic array
minimization by concurrent multiple and mixed simulated
annealing," M.S. Thesis, Naval Postgraduate School,
Monterey, CA, Dec. 1992.

23

